Cache Me Outside

Description

While being super relevant with my meme references, I wrote a program to see
how much you understand heap allocations. nc mercury.picoctf.net 17612

Attempts
Attempt 1: Decompiling using Ghidra

Since the compiled file is provided (heapedit), we can decompile it and have a
look at the code.

We see that the flag is loaded from a file on the server (flag.txt) and then read
into a variable (char flag [72])

We can also see that the size of the flag string (char[]) is 72, which is 9bytes,
however, only 8 bytes (0x40 = 64) are being read from the file (fgets(flag,
0x40, flagfile)). Maybe this is important, maybe not, who knows (I don’t).

Then a huge bunch of pointer-arithmetic-shit is being done in a weird-ass loop,
we won’t bother with this one for now.

We can then also see strcat((char *)local_98,flag)

man strcat strcat(char *restrict dst, const char *restrict src)

appends the content of src to the content of dst, basically in-place concatinating
the dst-string with the src-string.

Now, the thing is, this stuff happens every loop iteration, we can see in the loop
that this happens exactly 7 times. So the contents of local_98 now also contain
our flag. Since local_98 gets assigned a new address space in the heap (first
line in the for-loop local_98 = (undefined8*) malloc(0x80)) I am assuming
that we technically only care about the contents of local_98 on the very last
iteration, since this is then kept after the loop. We can also see a bunch of
weird-ass addresses being written to this variable, don’t know what to do with
this info tho.

On line 48 we have a free(local_98), which iirc only marks this address-
space as free, but the contents of it are still very much there, since nothing
else seems to be directly overriding it nor did the contents of local_98 get
moved/copied to any other variable I assume that we could still read the flag
from that address-space.

free()
The free() function frees the memory space pointed to by ptr, which must have been re
previous call to malloc() or related functions. Otherwise, or if ptr has already been 1
defined behavior occurs. If ptr is NULL, no operation is performed.


https://play.picoctf.org/practice/challenge/146?category=6&page=1

|

L

)|

-

=

T

undefined8 main(void)

{
long in_FS OFFSET;
undefined local_ag;
int local_a8;
int local_a4;

9| undefined8 *local_a0;

10| undefined8 *local_%98;

11| FILE *flagfile;

12| undefined8 *local_g8;

13| wvoid *local_ 80;

14| undefined8 local _78;

15| undefined8 local_70;

16, undefined8 local_68;

17| undefined local B0;

18| char flag [72];

19, long local_10;

W~ U B WM

21| local_10 = *(long *)(in_FS_OFFSET + 0x28);
22| setbuf(stdout, (char *)ox0);

23| flagfile = fopen("flag. tut","r");

24| fgets(flag,ox40,flagfile);

25| Tlocal_78 = Ox2073592073696874;

26| local_70 = Ox6d6f546e61722061;

27| local_68 = Ox2e676e6972747320;

28| local_80 = 0;

29| local_a0 = (undefinedd *)0x0;

30| for (local_a4 = 0; local_a4 < 7; local_ad = local_ad + 1) {
31 local_98 = (undefineds *)malloc (0x80);
32 if (local_a0 == (undefineds *)ox0) {

33 local_a® = local_98;

34 }

g3 *local_98 = Ox73746172676e643;

36 local_S8[1] = 0x662072756f592021;

37 local_SB8[2] = 0x203a73692067516c;

38 *(undefined *)(local 98 + 3) = 0;

39 strcat((char *)local_98,flag):;

40

41| Tlocal_88 = (undefined® *)malloc(0x80);

42| *local_88 = 0x5420217972726f53;

43| Tlocal_88[1] = 0x276e6f7720736968;

44| Tlocal_88[2] = Ox7920706c65682074;

45| *{undefined4 *) (local_88 + 3) = 0x203a756T;
46| *{undefined *){{long)local_88 + Oxlc) = O;
47| strcat((char *)local_88, (char *)&local_78);
48| free(local_%8);

48| free(local_88);

50| local_a8 = 0;

51| Tlocal_al = 0;

Figure 1: decompiled code



More Coming Soon

Binary Exploitation is great and all but this is too much guesswork for me,
starting now - my bachelor’s degree in Binary Exploitation with pwn.com as
recommended by this roadmap

|.am therefore leaving'-immediately for Nepal,
where | intend t_r:a___live as a goat.



https://pwn.com
https://www.hoppersroppers.org/roadmap/training/pwning.html

	Cache Me Outside
	Description
	Attempts
	Attempt 1: Decompiling using Ghidra


	More Coming Soon

